Апофема правильной треугольной пирамиды рисунок. Пирамида (геометрия)

Данный видеоурок поможет пользователям получить представление о теме Пирамида. Правильная пирамида. На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение. Рассмотрим, что такое правильная пирамида и какими свойствами она обладает. Затем докажем теорему о боковой поверхности правильной пирамиды.

На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение.

Рассмотрим многоугольник А 1 А 2 ...А n , который лежит в плоскости α, и точку P , которая не лежит в плоскости α (рис. 1). Соединим точку P с вершинами А 1 , А 2 , А 3 , … А n . Получим n треугольников: А 1 А 2 Р , А 2 А 3 Р и так далее.

Определение . Многогранник РА 1 А 2 …А n , составленный из n -угольника А 1 А 2 ...А n и n треугольников РА 1 А 2 , РА 2 А 3 РА n А n -1 , называется n -угольной пирамидой. Рис. 1.

Рис. 1

Рассмотрим четырехугольную пирамиду PABCD (рис. 2).

Р - вершина пирамиды.

ABCD - основание пирамиды.

РА - боковое ребро.

АВ - ребро основания.

Из точки Р опустим перпендикуляр РН на плоскость основания АВСD . Проведенный перпендикуляр является высотой пирамиды.

Рис. 2

Полная поверхность пирамиды состоит из поверхности боковой, то есть площади всех боковых граней, и площади основания:

S полн = S бок + S осн

Пирамида называется правильной, если:

  • ее основание - правильный многоугольник;
  • отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой.

Пояснение на примере правильной четырехугольной пирамиды

Рассмотрим правильную четырехугольную пирамиду PABCD (рис. 3).

Р - вершина пирамиды. Основание пирамиды АВСD - правильный четырехугольник, то есть квадрат. Точка О , точка пересечения диагоналей, является центром квадрата. Значит, РО - это высота пирамиды.

Рис. 3

Пояснение : в правильном n -угольнике центр вписанной и центр описанной окружности совпадает. Этот центр и называется центром многоугольника. Иногда говорят, что вершина проектируется в центр.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой и обозначается h а .

1. все боковые ребра правильной пирамиды равны;

2. боковые грани являются равными равнобедренными треугольниками.

Доказательство этих свойств приведем на примере правильной четырехугольной пирамиды.

Дано : РАВСD - правильная четырехугольная пирамида,

АВСD - квадрат,

РО - высота пирамиды.

Доказать :

1. РА = РВ = РС = РD

2. ∆АВР = ∆ВCР =∆СDР =∆DAP См. Рис. 4.

Рис. 4

Доказательство .

РО - высота пирамиды. То есть, прямая РО перпендикулярна плоскости АВС , а значит, и прямым АО, ВО, СО и , лежащим в ней. Значит, треугольники РОА, РОВ, РОС, РОD - прямоугольные.

Рассмотрим квадрат АВСD . Из свойств квадрата следует, что АО = ВО = СО = DО.

Тогда у прямоугольных треугольников РОА, РОВ, РОС, РОD катет РО - общий и катеты АО, ВО, СО и равны, значит, эти треугольники равны по двум катетам. Из равенства треугольников вытекает равенство отрезков, РА = РВ = РС = РD. Пункт 1 доказан.

Отрезки АВ и ВС равны, так как являются сторонами одного квадрата, РА = РВ = РС . Значит, треугольники АВР и ВCР - равнобедренные и равны по трем сторонам.

Аналогичным образом получаем, что треугольники АВР, ВCР, СDР, DAP равнобедренны и равны, что и требовалось доказать в пункте 2.

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему:

Для доказательства выберем правильную треугольную пирамиду.

Дано : РАВС - правильная треугольная пирамида.

АВ = ВС = АС.

РО - высота.

Доказать : . См. Рис. 5.

Рис. 5

Доказательство.

РАВС - правильная треугольная пирамида. То есть АВ = АС = ВС . Пусть О - центр треугольника АВС , тогда РО - это высота пирамиды. В основании пирамиды лежит равносторонний треугольник АВС . Заметим, что .

Треугольники РАВ, РВC, РСА - равные равнобедренные треугольники (по свойству). У треугольной пирамиды три боковые грани: РАВ, РВC, РСА . Значит, площадь боковой поверхности пирамиды равна:

S бок = 3S РАВ

Теорема доказана.

Радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м, высота пирамиды равна 4 м. Найдите площадь боковой поверхности пирамиды.

Дано : правильная четырехугольная пирамида АВСD ,

АВСD - квадрат,

r = 3 м,

РО - высота пирамиды,

РО = 4 м.

Найти : S бок. См. Рис. 6.

Рис. 6

Решение .

По доказанной теореме, .

Найдем сначала сторону основания АВ . Нам известно, что радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м.

Тогда, м.

Найдем периметр квадрата АВСD со стороной 6 м:

Рассмотрим треугольник BCD . Пусть М - середина стороны DC . Так как О - середина BD , то (м).

Треугольник DPC - равнобедренный. М - середина DC . То есть, РМ - медиана, а значит, и высота в треугольнике DPC . Тогда РМ - апофема пирамиды.

РО - высота пирамиды. Тогда, прямая РО перпендикулярна плоскости АВС , а значит, и прямой ОМ , лежащей в ней. Найдем апофему РМ из прямоугольного треугольника РОМ .

Теперь можем найти боковую поверхность пирамиды:

Ответ : 60 м 2 .

Радиус окружности, описанной около основания правильной треугольной пирамиды, равен м. Площадь боковой поверхности равна 18 м 2 . Найдите длину апофемы.

Дано : АВСP - правильная треугольная пирамиды,

АВ = ВС = СА,

R = м,

S бок = 18 м 2 .

Найти : . См. Рис. 7.

Рис. 7

Решение .

В правильном треугольнике АВС дан радиус описанной окружности. Найдем сторону АВ этого треугольника с помощью теоремы синусов.

Зная сторону правильного треугольника ( м), найдем его периметр.

По теореме о площади боковой поверхности правильной пирамиды , где h а - апофема пирамиды. Тогда:

Ответ : 4 м.

Итак, мы рассмотрели, что такое пирамида, что такое правильная пирамида, доказали теорему о боковой поверхности правильной пирамиды. На следующем уроке мы познакомимся с усечённой пирамидой.

Список литературы

  1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 008. - 233 с.: ил.
  1. Интернет портал «Якласс» ()
  2. Интернет портал «Фестиваль педагогических идей «Первое сентября» ()
  3. Интернет портал «Slideshare.net» ()

Домашнее задание

  1. Может ли правильный многоугольник быть основанием неправильной пирамиды?
  2. Докажите, что непересекающиеся ребра правильной пирамиды перпендикулярны.
  3. Найдите величину двугранного угла при стороне основания правильной четырехугольной пирамиды, если апофема пирамиды равна стороне ее основания.
  4. РАВС - правильная треугольная пирамида. Постройте линейный угол двугранного угла при основании пирамиды.

При подготовке к ЕГЭ по математике учащимся приходится систематизировать знания по алгебре и геометрии. Хочется объединить все известные сведения, например, о том, как вычислить площадь пирамиды. Причем начиная от основания и боковых граней до площади всей поверхности. Если с боковыми гранями ситуация ясна, так как они являются треугольниками, то основание всегда разное.

Как быть при нахождении площади основания пирамиды?

Оно может быть совершенно любой фигурой: от произвольного треугольника до n-угольника. И это основание, кроме различия в количестве углов, может являться правильной фигурой или неправильной. В интересующих школьников заданиях по ЕГЭ встречаются только задания с правильными фигурами в основании. Поэтому речь будет идти только о них.

Правильный треугольник

То есть равносторонний. Тот, у которого все стороны равны и обозначены буквой «а». В этом случае площадь основания пирамиды вычисляется по формуле:

S = (а 2 * √3) / 4.

Квадрат

Формула для вычисления его площади самая простая, здесь «а» - снова сторона:

Произвольный правильный n-угольник

У стороны многоугольника то же обозначение. Для количества углов используется латинская буква n.

S = (n * а 2) / (4 * tg (180º/n)).

Как поступить при вычислении площади боковой и полной поверхности?

Поскольку в основании лежит правильная фигура, то все грани пирамиды оказываются равными. Причем каждая из них является равнобедренным треугольником, поскольку боковые ребра равны. Тогда для того, чтобы вычислить боковую площадь пирамиды, потребуется формула, состоящая из суммы одинаковых одночленов. Число слагаемых определяется количеством сторон основания.

Площадь равнобедренного треугольника вычисляется по формуле, в которой половина произведения основания умножается на высоту. Эта высота в пирамиде называется апофемой. Ее обозначение - «А». Общая формула для площади боковой поверхности выглядит так:

S = ½ Р*А, где Р — периметр основания пирамиды.

Бывают ситуации, когда не известны стороны основания, но даны боковые ребра (в) и плоский угол при ее вершине (α). Тогда полагается использовать такую формулу, чтобы вычислить боковую площадь пирамиды:

S = n/2 * в 2 sin α.

Задача № 1

Условие. Найти общую площадь пирамиды, если в его основании лежит со стороной 4 см, а апофема имеет значение √3 см.

Решение. Его начинать нужно с расчета периметра основания. Поскольку это правильный треугольник, то Р = 3*4 = 12 см. Поскольку апофема известна, то можно сразу вычислить площадь всей боковой поверхности: ½*12*√3 = 6√3 см 2 .

Для треугольника в основании получится такое значение площади: (4 2 *√3) / 4 = 4√3 см 2 .

Для определения всей площади потребуется сложить два получившихся значения: 6√3 + 4√3 = 10√3 см 2 .

Ответ. 10√3 см 2 .

Задача № 2

Условие . Имеется правильная четырехугольная пирамида. Длина стороны основания равна 7 мм, боковое ребро — 16 мм. Необходимо узнать площадь ее поверхности.

Решение. Поскольку многогранник — четырехугольный и правильный, то в его основании лежит квадрат. Узнав площади основания и боковых граней, удастся сосчитать площадь пирамиды. Формула для квадрата дана выше. А у боковых граней известны все стороны треугольника. Поэтому можно использовать формулу Герона для вычисления их площадей.

Первые расчеты просты и приводят к такому числу: 49 мм 2 . Для второго значения потребуется вычислить полупериметр: (7 + 16*2):2 = 19,5 мм. Теперь можно вычислять площадь равнобедренного треугольника: √(19,5*(19,5-7)*(19,5-16) 2) = √2985,9375 = 54,644 мм 2 . Таких треугольников всего четыре, поэтому при подсчете итогового числа потребуется его умножить на 4.

Получается: 49 + 4*54,644 = 267,576 мм 2 .

Ответ . Искомое значение 267,576 мм 2 .

Задача № 3

Условие . У правильной четырехугольной пирамиды необходимо вычислить площадь. В ней известна сторона квадрата — 6 см и высота — 4 см.

Решение. Проще всего воспользоваться формулой с произведением периметра и апофемы. Первое значение найти просто. Второе немного сложнее.

Придется вспомнить теорему Пифагора и рассмотреть Он образован высотой пирамиды и апофемой, которая является гипотенузой. Второй катет равен половине стороны квадрата, поскольку высота многогранника падает в его середину.

Искомая апофема (гипотенуза прямоугольного треугольника) равна √(3 2 + 4 2) = 5 (см).

Теперь можно вычислять искомую величину: ½*(4*6)*5+6 2 = 96 (см 2).

Ответ. 96 см 2 .

Задача № 4

Условие. Дана правильная Стороны ее основания равны 22 мм, боковые ребра — 61 мм. Чему равна площадь боковой поверхности этого многогранника?

Решение. Рассуждения в ней такие же, как были описаны в задаче №2. Только там была дана пирамида с квадратом в основании, а теперь это шестиугольник.

Первым делом вычисляется площадь основания по указанной выше формуле: (6*22 2) / (4*tg (180º/6)) = 726/(tg30º) = 726√3 см 2 .

Теперь необходимо узнать полупериметр равнобедренного треугольника, который является боковой гранью. (22+61*2):2 = 72 см. Осталось по формуле Герона сосчитать площадь каждого такого треугольника, а потом умножить ее на шесть и сложить с той, что получилась для основания.

Расчеты по формуле Герона: √(72*(72-22)*(72-61) 2)=√435600=660 см 2 . Вычисления, которые дадут площадь боковой поверхности: 660*6 = 3960 см 2 . Осталось их сложить, чтобы узнать всю поверхность: 5217,47≈5217 см 2 .

Ответ. Основания - 726√3 см 2 , боковой поверхности - 3960 см 2 , вся площадь - 5217 см 2 .

Как можно построить пирамиду? На плоскости р построим какой-либо многоугольник, например пятиугольник ABCDE. Вне плоскости р возьмем точку S. Соединив точку S отрезками со всеми точками многоугольника, получим пирамиду SABCDE (рис.).

Точка S называется вершиной , а многоугольник ABCDE - основанием этой пирамиды. Таким образом, пирамида с вершиной S и основанием ABCDE - это объединение всех отрезков , где М ∈ ABCDE.

Треугольники SAB, SBC, SCD, SDE, SEA называются боковыми гранями пирамиды, общие стороны боковых граней SA, SB, SC, SD, SE - боковыми ребрами .

Пирамиды называются треугольными, четырехугольными, п-угольными в зависимости от числа сторон основания. На рис. даны изображения треугольной, четырехугольной и шестиугольной пирамид.

Плоскость, проходящая через вершину пирамиды и диагональ основания, называется диагональной , а полученное сечение - диагональным. На рис. 186 одно из диагональных сечений шестиугольной пирамиды заштриховано.

Отрезок перпендикуляра, проведенного через вершину пирамиды к плоскости ее основания, называется высотой пирамиды (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Пирамида называется правильной , если основание пирамиды-правильный многоугольник и вершина пирамиды проектируется в его центр.

Все боковые грани правильной пирамиды - конгруэнтные равнобедренные треугольники. У правильной пирамиды все боковые ребра конгруэнтны.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды. Все апофемы правильной пирамиды конгруэнтны.

Если обозначить сторону основания через а , а апофему через h , то площадь одной боковой грани пирамиды равна 1 / 2 ah .

Сумма площадей всех боковых граней пирамиды называется площадью боковой поверхности пирамиды и обозначается через S бок.

Так как боковая поверхность правильной пирамиды состоит из n конгруэнтных граней, то

S бок. = 1 / 2 ahn = Ph / 2 ,

где Р - периметр основания пирамиды. Следовательно,

S бок. = Ph / 2

т. е. площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Площадь полной поверхности пирамиды вычисляется по формуле

S = S ocн. + S бок. .

Объем пирамиды равен одной трети произведения площади ее основания S ocн. на высоту Н:

V = 1 / 3 S ocн. Н.

Вывод этой и некоторых других формул будет дан в одной из последующих глав.

Построим теперь пирамиду другим способом. Пусть дан многогранный угол, например, пятигранный, с вершиной S (рис.).

Проведем плоскость р так, чтобы она пересекала все ребра данного многогранного угла в разных точках А, В, С, D, Е (рис.). Тогда пирамиду SABCDE можно рассматривать как пересечение многогранного угла и полупространства с границей р , в котором лежит вершина S.

Очевидно, что число всех граней пирамиды может быть произвольным, но не меньшим четырех. При пересечении трехгранного угла плоскостью получается треугольная пирамида, у которой четыре грани. Любую треугольную пирамиду иногда называют тетраэдром , что означает четырехгранник.

Усеченную пирамиду можно получить, если пирамиду пересечь плоскостью, параллельной плоскости основания.

На рис. дано изображение четырехугольной усеченной пирамиды.

Усеченные пирамиды также называются треугольными, четырехугольными, n-угольными в зависимости от числа сторон основания. Из построения усеченной пирамиды следует, что она имеет два основания: верхнее и нижнее. Основания усеченной пирамиды - два многоугольника, стороны которых попарно параллельны. Боковые грани усеченной пирамиды - трапеции.

Высотой усеченной пирамиды называется отрезок перпендикуляра, проведенного из любой точки верхнего основания к плоскости нижнего.

Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и плоскостью сечения, параллельной основанию. Высота боковой грани правильной усеченной пирамиды (трапеции) называется апофемой .

Можно доказать, что у правильной усеченной пирамиды боковые ребра конгруэнтны, все боковые грани конгруэнтны, все апофемы конгруэнтны.

Если в правильной усеченной n -угольной пирамиде через а и b n обозначить длины сторон верхнего и нижнего оснований, а через h - длину апофемы, то площадь каждой боковой грани пирамиды равна

1 / 2 (а + b n ) h

Сумма площадей всех боковых граней пирамиды называется площадью ее боковой поверхности и обозначается S бок. . Очевидно, что для правильной усеченной n -угольной пирамиды

S бок. = n 1 / 2 (а + b n ) h .

Так как па = Р и nb n = Р 1 - периметры оснований усеченной пирамиды, то

S бок. = 1 / 2 (Р + Р 1) h ,

т. е. площадь боковой поверхности правильной усеченной пирамиды равна половине произведения суммы периметров ее оснований на апофему.

Сечение, параллельное основанию пирамиды

Теорема. Если пирамиду пересечь плоскостью, параллельной основанию, то:

1) боковые ребра и высота разделятся на пропорциональные части;

2) в сечении получится многоугольник, подобный основанию;

3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Теорему достаточно доказать для треугольной пирамиды.

Так как параллельные плоскости пересекаются третьей плоскостью по параллельным прямым, то (АВ) || (А 1 В 1), (BС) ||(В 1 C 1), (AС) || (A 1 С 1) (рис.).

Параллельные прямые рассекают стороны угла на пропорциональные части, и поэтому

$$ \frac{\left|{SA}\right|}{\left|{SA_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Следовательно, ΔSAB ~ ΔSA 1 B 1 и

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|} $$

ΔSBC ~ ΔSB 1 C 1 и

$$ \frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Таким образом,

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{AC}\right|}{\left|{A_{1}C_1}\right|} $$

Соответственные углы треугольников ABC и A 1 B 1 C 1 конгруэнтны, как углы с параллельными и одинаково направленными сторонами. Поэтому

ΔABC ~ ΔA 1 B 1 C 1

Площади подобных треугольников относятся, как квадраты соответствующих сторон:

$$ \frac{S_{ABC}}{S_{A_1 B_1 C_1}}=\frac{\left|{AB}\right|^2}{\left|{A_{1}B_1}\right|^2} $$

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{SH}\right|}{\left|{SH_1}\right|} $$

Следовательно,

$$ \frac{S_{ABC}}{S_{A_1 B_1 C_1}}=\frac{\left|{SH}\right|^2}{\left|{SH_1}\right|^2} $$

Теорема. Если две пирамиды с равными высотами рассечены на одинаковом расстоянии от вершины плоскостями, параллельными основаниям, то площади сечений пропорциональны площадям оснований.

Пусть (черт. 84) В и В 1 - площади оснований двух пирамид, H - высота каждой из них, b и b 1 - площади сечений плоскостями, параллельными основаниям и удалёнными от вершин на одно и то же расстояние h .

Согласно предыдущей теореме мы будем иметь:

$$ \frac{b}{B}=\frac{h^2}{H^2}\: и \: \frac{b_1}{B_1}=\frac{h^2}{H^2} $$
откуда
$$ \frac{b}{B}=\frac{b_1}{B_1}\: или \: \frac{b}{b_1}=\frac{B}{B_1} $$

Следствие. Если В = В 1 , то и b = b 1 , т. е. если у двух пирамид с равными высотами основания равновелики, то равновелики и сечения, равноотстоящие от вершины.

Другие материалы

Рассмотрим, какими свойствами обладают пирамиды, в которых боковые грани перпендикулярны основанию.

Если две смежные боковые грани пирамиды перпендикулярны основанию , то общее боковое ребро этих граней является высотой пирамиды . Если в задаче сказано, что ребро пирамиды является ее высотой , то речь идет именно об этом виде пирамид.

Грани пирамиды, перпендикулярные основанию — прямоугольные треугольники.

Если основание пирамиды — треугольник

Боковую поверхность такой пирамиды в общем случае ищем как сумму площадей всех боковых граней.

Основание пирамиды является ортогональной проекцией грани, не перпендикулярной основанию (в данном случае, SBC). А значит, по теореме о площади ортогональной проекции, площадь основания равна произведению площади этой грани на косинус угла между нею и плоскостью основания.

Если основание пирамиды — прямоугольный треугольник

В этом случае все грани пирамиды — прямоугольные треугольники .

Треугольники SAB и SAС прямоугольные, так как SA — высота пирамиды. Треугольник ABC прямоугольный по условию.

То, что треугольник SBC прямоугольный, следует из теоремы о трех перпендикулярах (AB — проекция наклонной SB на плоскость основания. Так как AB перпендикулярна BC по условию, то и SB перпендикулярна BC).

Угол между боковой гранью SBC и основанием в этом случае — угол ABS.

Площадь боковой поверхности равна сумме площадей прямоугольных треугольников:

Так как в данном случае

Если основание пирамиды — равнобедренный треугольник

В этом случае угол между плоскостью боковой грани BCS и плоскостью основания — это угол AFS, где AF — высота, медиана и биссектриса равнобедренного треугольника ABC.

Аналогично — если в основании пирамиды лежит равносторонний треугольник ABC.

Если основание пирамиды — параллелограмм

В этом случае основание пирамиды является ортогональной проекцией боковых граней, не перпендикулярных основанию.

Если разбить основание на два треугольника, то

где α и β — соответственно углы между плоскостями ADS и CDS и плоскостью основания.

Если BF и BK — высоты параллелограмма, то угол BFS — это угол наклона боковой грани CDS к плоскости основания, а угол BKS — угол наклона грани ADS.

(чертеж сделан для случая, когда B — тупой угол).

Если в основании пирамиды лежит ромб ABCD, то углы BFS и BKS равны. Треугольники ABS и CBS, а также ADS и CDS в этом случае также равны.

Если основание пирамиды — прямоугольник

В этом случае угол между плоскостью боковой грани SAD и плоскостью основания есть угол SAB,

а угол между плоскостью боковой грани SCD и плоскостью основания — угол SCB

(по теореме о трех перпендикулярах).

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками.

Такие пирамиды обладают множеством уникальных свойств:

  • Все стороны основания одинаковой длины;
  • Все боковые ребра равны между собой;
  • Все углы в основании равны, а также двугранные углы, образующиеся ребрами равны;
  • Каждая боковая грань одинаковой площади.

Рассчитывается из площади ее основания и боковой развертки. Для расчета объема достаточно знать высоту пирамиды и площадь ее основания. Для начала разберемся с формулой площади правильного шестиугольника.
Одним из самых весомых отличий правильного шестиугольника от остальных фигур является равенство его стороны радиусу описанной окружности. Благодаря этому свойству площадь основания правильной шестиугольной пирамиды рассчитывается по формуле:

Для расчета можно использовать как радиус описанной окружности, так и длину стороны правильного шестиугольника.
Теперь вернемся к формуле объема шестиугольной пирамиды. Она представляет собой одну треть произведения площади основания на высоту пирамиды, опущенную к этому основанию:

Теперь рассмотрим пример расчета объема шестиугольной пирамиды.

Пусть дана правильная шестиугольная пирамида, высота которой равна h = 8 см. вокруг основания описана окружность с радиусом R = 6 см. Найдите объем.
В вычислении требуемого параметра не будет ничего сложного – ведь все необходимые величины заданы условиями. Поэтому найдем площадь основания нашего многогранника. Помним, что радиус описанной вокруг правильного шестиугольника окружности равен его сторонам. Подставим данные в формулу:

Теперь можем использовать найденную площадь для расчета объема нашей шестиугольной пирамиды:

Вот таким образом, зная свойства правильного шестиугольника и формулу объема для шестиугольной пирамиды, мы нашли все необходимые параметры.